
Student Code Online Review
and Evaluation 2.0

TEAM: SHAMIK BERA, DOROTHY AMMONS, PATRICK KELLY, RAK ALSHARIF
ADVISOR/CLIENT: RAGHUVEER MOHAN

Table of Contents
• Milestone 3

• Milestone 3 – Completed Matrix

• Database fixes

• Rubric Page

• Rubric Page Demo/ What’s left

• Roster Functionality

• Roster Functionality Demo/ What’s left

• LLM-Based AI Detection

• MOSS Implementation work

• MOSS Frontend & System Integration

• Future Steps: MOSS Integration with Assignment Submissions

• Milestone 4 – Task Matrix

Milestone 3

● Implement MOSS functionality into S.C.O.R.E. web application

● Implement LLM for AI detection into S.C.O.R.E. web application

● Set up Google Cloud Run to S.C.O.R.E. authentication

● Integrate import functionality for rosters into S.C.O.R.E.

● Integrate rubric functionality into S.C.O.R.E.

● Implement export functionality for grades into S.C.O.R.E.

Milestone 3 – Completion Matrix
Task Dorothy Patrick Shamik Rak To Do

1. Finalize backend and
databases

100% 0% 0% 0%

2. Set up hosting with Google
Cloud Run

0% 0% 0% 0% Set up hosting

3. Add the LLM for AI detection
to the web application

0% 0% 0% 50% Add functionality to front end

4. Add the MOSS functionality
to the web application

0% 70% 0% 0% Connect MOSS to the students’ assignment
submissions

5. Add the rubric page and
functionality

50% 0% 0% 0% Fix database storage, connect to autotest files

6. Add the import functionality
for rosters

0% 0% 60% 0% Connect roster to the created course to see the added
students

7. Add the export functionality
for grades

0% 0% 0% 0% Coincides with rubric functionality, add export CSV
option for student grades after

Database fixes
• Fixed some of the retrieving and sending from/to the database in the endpoints
• Stored all large files (input files, export files, student submissions.. etc) in the firestore bucket

Rubric Page
• Added a “Points” input box for each test case
• Added a button for creating rubric within an assignment
• Added a rubric page

• Rubric has 5 columns
• Total: Total number of points for the assignment
• Compilation: Points granted for successful code compilation
• Attempt: Points granted for submitting anything
• Runtime: “Under _ Seconds” Points granted for if the runtime is under a certain

amount of time
• Late Penalty: “After _ Days Late (deduction)” Points removed a given amount of

days after due date

Rubric Page Demo/
What’s left
• Database endpoint is already set up,

however, rubrics are attached to
assignments. This means an
assignment needs to be created
before adding the rubric. We need to
figure out how to make this possible
when rubric creations are completed
before assignments are published

• We then need to connect the rubric
inputs to the autotest files in order
to get proper scores for student
submissions

http://www.youtube.com/watch?v=_owmnYU5Dcw

Roster functionality

• Added a file input that only accepts CSV format.
• Added a button for importing a roster once the CSV file has been

selected.
• The header of the CSV contains student’s full name and their email.
• An existing button and input to add new students manually would also

be inserted into the imported roster.

Roster functionality
Demo/ What’s left

• A database endpoint for importing
roster is created in the backend, but it
is embedded in the course page.
Students can be added to the course
either one by one or by importing a CSV
file containing multiple students,
which is done by editing the course.
The CSV file must be attached before
uploading, and then it is parsed row by
row.

● Next, the student's name and email, saved
from the database, need to connect to the
created SCORE 2.0 classes.

LLM-Based AI Detection

● Integrated multiple pre-trained LLM models into SCORE 2.0 backend
○ RoBERTa-based classifier (HuggingFace)
○ GPT-based probability detector (OpenAI API)

■ $env:OPENAI_API_KEY = "sk-...” <<< Secret Key
● Cleaned and removed the previous detection modules
● Built a stable ensemble combining both detectors
● Standardized the AI probability output into a unified JSON format
● Added logging + error handling for reliability
● Validated the detection results on multiple student code samples
● Prepared the system for frontend integration in Milestone 4

MOSS Implementation Work

MOSS Integration – Backend Work

● Built a Python similarity analysis module and converted it into a backend route (/api/moss/demo)

● Added directory scanning, file comparison logic, and matrix generation

● Connected the tool into the existing Flask backend structure

API Development & Testing

● Added backend endpoint with proper HTTP methods

● Validated functionality using cURL and local sample submissions

● Fixed routing issues and JSON-return formats

MOSS Frontend & System Integration
Integration With SCORE Web App

● Built a clean UI page for instructors to view similarity
results

● Added dynamic table rendering and refresh functionality

● Successfully deployed the page into the compiled frontend
bundle

Fixes and System-Level Improvements

● Rebuilt frontend assets using npm run build and linked
them to Flask

● Debugged static file serving and fallback routes

● Prepared full-stack flow so future MOSS features can plug
directly into assignment pages

Future Steps: Full MOSS Integration With
Assignment Submissions

Next Steps – Phase 2 MOSS Integration

● Connect MOSS to real student submissions instead of sample files

● Automate similarity detection whenever students submit code to SCORE

● Store all similarity results in Firestore for instructor review

● Build a dedicated instructor dashboard panel for viewing comparisons

Milestone 4 – Task Matrix
Task Dorothy Patrick Shamik Rak

1. Fix rubric/assignment database clash 100% 0% 0% 0%

2. Connect rubric to autotest files 50% 0% 50% 0%

3. Add the export functionality for grades 100% 0% 0% 0%

4. Connect roster to the created courses 0% 10% 90% 0%

5. Integrate AI Detection (LLM) into the
instructor dashboard

0% 0% 0% 100%

6. Set up hosting with Google Cloud Run 100% 0% 0% 0%

7. Connect MOSS to real student
submission

0% 100% 0% 0%

Questions?

